
Faking Errors to Avoid Making Errors:
Very Weakly Supervised Learning for Error Detection in Writing

Jonas Sjöbergh
KTH KOD

SE-100 44 Stockholm, Sweden
jsh@nada.kth.se

Ola Knutsson
KTH KOD

SE-100 44 Stockholm, Sweden
knutsson@nada.kth.se

Abstract

This paper describes a method to create a gram-
mar checker “for free”. It requires no man-
ual work, only unannotated text and a few ba-
sic NLP tools. The method used is to simply
annotate a lot of errors in written text and
train an off-the-shelf machine learning imple-
mentation to recognize such errors. To avoid
manual annotation artificially created errors are
used for training. Recall is comparable to other
grammar checkers but precision is lower. Our
method also complements traditional grammar
checkers, i.e. they do not always find the same
errors. The evaluation is performed on real er-
rors.

1 Introduction

Automatic grammar checking is traditionally
done using manually written rules, constructed by
a computational linguist. We present a method
that saves a lot of work by training a machine
learning algorithm on artificially created errors.

Methods for detecting grammatical errors with-
out using manually constructed rules have been
presented before. (Atwell 87) uses the proba-
bilities in a statistical part-of-speech tagger, de-
tecting errors as low probability part-of-speech
sequences. A similar method is presented in
(Bigert & Knutsson 02), where new text is com-
pared to known correct text and deviations from
the “language norm” are flagged as suspected er-
rors. (Chodorow & Leacock 00) present a method
based on mutual information measurements to de-
tect incorrect usage of difficult words.

(Mangu & Brill 97) use machine learning to de-
tect when one word has been confused with an-
other. (Golding 95) combines several methods
to solve the same problem. (Hardt 01) treats
comma placement and determiner-noun agree-
ment in Danish as a confusion set problem in a
similar way. He also uses artificial errors as neg-
ative examples. Another example of a confusion
set problem is English article usage before noun
phrases (Han et al. 04).

Unlike most of the methods mentioned our
method is applicable to a wide range of error
types. Our method is similar to the one presented
by (Izumi et al. 03), who manually annotated er-
rors in transcribed spoken language.

Our method is based on viewing grammar
checking more or less as a tagging task. We sim-
ply train an available machine learning algorithm
on annotated errors to create a grammar checker.
The new idea in our approach is to use only arti-
ficial errors for training, and we show that while
it might not be as good as training on real er-
rors, it still produces a useful grammar checker.
The strength of this approach is that it is very
resource lean. No time consuming manual an-
notation of errors is needed, neither is access to
large amounts of human produced (unintentional)
errors. Almost no manual work at all is required,
only unannotated text and a few basic NLP tools
are used.

2 Method of Detecting Errors

The basic idea of our method is to treat gram-
mar checking as a tagging task. Collect a lot
of text, mark all errors with “ERROR” and all
other words with “OK”. Train an off-the-shelf
tagger on this data and you have a grammar
checker. To achieve better feedback it is possi-
ble to have different tags for different types of
errors, i.e. “SPELLING”, “VERB-TENSE”, etc.
Another way to achieve this is to train a new spe-
cialized classifier for each error type, which ig-
nores other types of errors.

Finding these errors and annotating them re-
quires a lot of work. Our method avoids this by
using artificial errors. A lot of text without er-
rors is used, and the text is then corrupted by
adding errors. Since they are added automatically
they can be annotated at the same time. When
this is done we automatically annotate the result-
ing text with part-of-speech (PoS), using TnT
(Brants 00). The words, PoS and error anno-



tation is then used as training data for the au-
tomatic grammar checker. Almost any machine
learning implementation could be used for this.
We use fnTBL (Ngai & Florian 01), a transfor-
mation based rule learner, which produces rules
that are easily understood by humans.

Below is an example of an error generation
program, for agreement errors. When imple-
mented in a high level scripting language, the
code is not much longer than this pseudo code.
Since the main strength of our method is that it
is resource lean, the simpler the error generation
the better.

(1) Read lemma lexicon (or stems)

(2) Read PoS-tags with agreement constraints

(3) Run PoS-tagger

(4) For each tagged sentence:

(5) Pick random word with agreement constraint

(6) Get lemma (lexicon)

(7) Get random word with this lemma (lexicon)

(8) If not exact same word:

(9) Change word, mark as error

If we run the error generation code on “I
bought a car.” we could get for instance “I/OK
bought/OK a/OK cars/ERR ./OK”.

The error generation programs sometimes
change a sentence so that the result is still gram-
matical. One simple example would be a pro-
gram that inserts word order errors by randomly
changing the order of neighboring words. Not all
changes will lead to errors, for example “I heard
dogs barking” and “I heard barking dogs” are
both correct, but “heard I dogs barking” is not.
Such sentences will of course still be marked as
erroneous. This is not a great problem, since if
something is correct there are usually many ex-
amples of this which are not the result of changes,
and thus marked as correct. This means that the
learner will in general only learn rules for those
artificial errors that result in text which is incor-
rect, since the other “errors” will be drowned out
by all the correct examples.

Our method can be used on many error types.
Some examples of errors that could be generated
artificially include: word order errors (reorder
randomly selected words), missing words (remove
randomly selected words), “hard” spelling errors
(replace words with another word with only a
one letter difference), split compounds (replace all

words that could be made from concatenating two
other words in the corpus with these two words),
agreement errors and verb tense errors (use a dic-
tionary lookup to replace words with another in-
flectional form of the same word), prepositional
use (change prepositions to other prepositions),
etc.

The main strength is errors that are simple
to generate, but where the resulting sentence
structure is hard to predict. Word order errors
and split compounds are examples of such er-
rors. Errors such as repeated words for which
it is straightforward to predict the result can also
be handled by our method, but is probably better
handled by traditional methods.

We have tested our method on two different er-
ror types: split compounds, an error type suited
to our method, and agreement errors, suited to
traditional grammar checking methods. Agree-
ment errors were tested to see how our method
holds up where the competition is the hardest.
We compared our method to three other gram-
mar checkers, evaluating them on Swedish texts
of different genres.

2.1 Split Compounds

In compounding languages, such as Swedish and
German, a common error is to split compound
words, i.e. write “quick sand” when “quicksand”
was intended. Two concrete examples from
Swedish: (1) “en l̊angh̊arig sjukgymnast” means
“a physical therapist with long hair”. Splitting
the compounds to make “en l̊ang h̊arig sjuk gym-
nast” is still grammatical but the meaning is
changed to “a tall, hairy and sick gymnast”. (2)
If the compound “ett personnummer” (“social se-
curity number”) is split to “ett person nummer”
(“one person number”) it would lead to an agree-
ment error and be ungrammatical.

Training data for the erroneously split com-
pounds experiments was a one million words cor-
pus of written Swedish, the Stockholm-Ume̊a Cor-
pus, SUC (Ejerhed et al. 92). A modified spelling
checker, Stava (Domeij et al. 94; Kann et al. 01)
was used to automatically split compounds.

While some manual work has been put into cre-
ating Stava (and thus in a sense made this type
of error generation less independent of manual
work), the part used here, i.e. the compound anal-
ysis component, was automatically constructed
from a dictionary. If however there are tools avail-
able that someone already put a lot of manual



effort into creating, our method could use these.
Our method would then be a method of creating
a grammar checking component from other tools
in an unsupervised way.

The training data consisted of the corpus texts,
to show correct language use, and another copy
of all the corpus texts. The second copy had all
compounds recognized by the compound splitter
split into their components, with the components
marked “error”.

The rule learner was given the word n-grams,
PoS n-grams and error annotation n-grams. The
n-grams were unigrams, bigrams and trigrams.
Some combinations of these were also allowed,
such as the current word and error annotation
trigrams. The initial guess for the learner was
that words more common in compounds than as
a single word (in the training data) were probably
errors and all other words correct. The best rules
found by the learner used PoS bigrams and error
annotation of one word and PoS of its neighbor.

To improve the precision of the learned rules
one can use the fact that if a compound is split
it will result in at least two components. Any
single word marked error is thus probably a false
positive (or one of its neighbors is a false neg-
ative), and can be removed. Since there was a
spelling checker available we improved this a lit-
tle by filtering the output through the spelling
checker. If a suspicious word could not be com-
bined into a correct compound by using a neigh-
boring word also marked “error” it was considered
a false alarm and the error was removed. This im-
proved the precision but also removed many cor-
rectly detected split compounds, usually because
they were misspelled as well as erroneously split
(and would thus be found by the spelling checker
instead).

Using the spelling checker gave only a small
improvement over just removing errors with no
neighboring error, while both methods improved
the precision of the original rules significantly.

2.2 Agreement Errors

In Swedish, determiners, adjectives, possessives
and nouns must agree in number, gender and defi-
niteness. Agreement errors are quite common, es-
pecially when revising text using a computer. The
agreement can span long reaches of text, which
can make the errors hard to detect. Manually
writing good rules for agreement errors is rela-
tively straightforward, and it is one of the more

popular error categories to detect among auto-
matic grammar checkers.

To generate artificial errors the SUC corpus was
used again. In each sentence a word from any
word class with agreement restrictions was ran-
domly selected. This word was then changed to
another randomly selected form of the same word.
This was done by a simple lexicon lookup were the
lemma of the word was found and another word
with the same lemma and a different surface form
was selected. The selected word was marked as an
error and all other words were marked as correct.

When an agreement error occurs, at least two
words are involved. We only mark the changed
word as an error, although it would be reasonable
to mark all words with agreement restrictions re-
lated to the changed word. One reason for this
is that it is easy to mark the changed word but
hard to mark the other words. If we could find
them, we would already have an agreement er-
ror detection method. Also, since we know which
word was changed, we know which word should be
corrected to retrieve the intended meaning, even
though the agreement error itself could likely be
corrected in several ways.

As features for the machine learner the gender,
number and definiteness of the word were given
(if applicable). All this information is included
in the tagset we trained TnT on, and was auto-
matically assigned. The PoS of the word and the
error annotation were also included. Unigrams,
bigrams, trigrams and combinations of these fea-
tures were used. The best rules combined PoS
and n-grams of the gender features.

The initial guess was that there were no errors
in the text. A baseline was constructed by lo-
cating every occurrence of two consecutive words
that had different gender, number or definite-
ness and marking the first of these as an error.
This baseline could be used as initial guess for
the learner, which gives higher precision than the
original initial guess, since many rules are learned
that remove alarms (mostly spurious alarms from
the baseline), but lower recall.

3 Evaluation

We compared our method to three different gram-
mar checkers for Swedish, one commercial gram-
mar checker, one state of the art research product
and one method not based on manually written
rules.



MS Word ProbGr. Granska Sn̊alGr. Sn̊alGr. Baseline Baseline Union Inter-

(manual) (statistical) (manual) + Filter + Filter section

Detected errors 75 225 322 588 535 331 120 582 275
False negatives - - 490 224 277 481 692 230 537
False positives - - 6 49 24 162 6 29 1
Precision - - 98% 92% 96% 67% 95% 95% 100%
Recall - - 40% 72% 66% 41% 15% 72% 34%

Table 1: Detection of split compound components. The baseline is simply the most common tag for
each word (“error” or “correct”), from the training data. “Union” is any word marked “error” by either
the manual rules of the Granska grammar checker or the filtered automatic rules of Sn̊alGranska (our
method). “Intersection” is any word marked by both. MS Word and ProbGranska do not specifically
address the problem of split compounds but find some anyway, but of course with a different diagnosis.

• The Swedish grammar checker in Microsoft
Word 2000, which uses a grammar checker
developed by Lingsoft (Arppe 00; Birn 00).
It is based on manually constructed rules.
The rules are tuned for high precision.

• Granska (Domeij et al. 00), a state of the
art grammar checker, also based on manually
constructed rules. Roughly 1 000 hours of
manual work have been put into creating the
rule set.

• ProbGranska (Bigert & Knutsson 02), a sta-
tistically based grammar checker. It detects
errors by looking for things that are “differ-
ent” from known correct text, based on PoS
trigrams. ProbGranska is currently used as a
complement to the manual rules of Granska
in a grammar checking environment.

3.1 Evaluation on Collections of Errors

The first evaluation was performed on collections
of examples of authentic split compounds and
agreement errors. These were all taken from real
texts, but since there is at least one error in each
sentence it is a quite unrealistic data set, and it
is easy for the grammar checkers to achieve high
precision with so many errors available. The ben-
efit of these collections is that all errors that oc-
cur have been manually annotated, so it is easy
to check the precision and recall of the grammar
checkers. Since these are real errors a grammar
checker with a good result on these texts will
likely work well on “real” texts too.

For split compounds examples were taken
mostly from web pages and newspapers. There
were 5 124 words, of which 812 were components

from split compounds. Most compounds con-
sisted of only two components. Sometimes two
(but rarely more) adjacent compounds were both
split. The results are shown in Table 1.

For split compounds the results are quite good.
Compared to the other grammar checkers, the au-
tomatically learned rules have lower precision but
the highest recall. Detecting split compounds is
considered quite hard, and Granska is one of the
few grammar checkers that actually tries to detect
split compounds. It is likely the best grammar
checker currently available for this.

The grammar checker in MS Word 2000 does
not look for split compounds but these errors
sometimes look like other types of errors that MS
Word recognizes. On the test data MS Word
classed 75% of the detected split compounds as
spelling errors. One third of these were caused by
the split compound also being miss-spelled, one
third by the compound containing a word which
was not recognized (e.g. “Rambo”) and one third
by the morphological change of the head of the
compound. MS Word classed the remaining de-
tected split compounds as agreement errors.

The ProbGranska extension to Granska often
finds split compounds. In the test data most of
the alarms generated by ProbGranska are caused
by split compounds.

For agreement errors the data consisted of 4 556
words, also mostly from newspapers or the Inter-
net. There were 221 agreement errors in the test
data, the results are shown in Table 2.

For agreement errors the results are not as im-
pressive, which is to be expected since agreement
errors are one of the best covered error types of
traditional grammar checkers. While the auto-
matic rules are outperformed by the manually cre-



MS Word ProbGranska Granska Sn̊alGranska Baseline Union Intersection

(manual) (statistical) (manual)

Detected errors 71 17 101 88 100 134 54
False negatives 155 - 125 138 126 92 172
False positives 1 - 5 15 143 19 1
Precision 99% - 95% 85% 41% 88% 98%
Recall 31% - 45% 39% 44% 60% 24%

Table 2: Detection of agreement errors. The baseline marks the first of any two consecutive words
that have different gender, number or definiteness as an error. “Union” is any word marked “error”
by either the manual rules of the Granska grammar checker or the automatic rules of Sn̊alGranska
(our method). “Intersection” is any word marked by both. ProbGranska does not specifically look for
agreement errors.

ated rules, the results are still good enough to be
useful.

The main reason for the lower recall of the au-
tomatic rules is that they only work in a small
local window. Many of the errors detected by the
manual rules span tens of words. Since the au-
tomatic rules find none of these errors and still
manages to find almost as many errors, there are
a lot of errors detected by the automatic rules
not found by the manual rules. Combining the
two methods thus gives better results than either
method individually, as shown in Table 2. They
also complement each other, though not as much,
on split compounds, as shown in Table 1.

3.2 Evaluation on Real Texts

To evaluate the performance on real texts a few
sample texts were collected. All grammar check-
ers were then run on the texts. All words sus-
pected to contain errors by any of the grammar
checkers were manually checked to see if it was a
real error. The texts were not manually checked
to find all errors, since that would require a lot
of work and the time was not available. This
gives the precision of the grammar checkers, but
not the recall since there could be many errors
not detected by any of the grammar checkers. It
is possible to get an upper bound on the recall
though, using the errors missed by one grammar
checker and detected by another.

The first genre we evaluated the grammar
checkers on was old newspaper articles. These
were taken from the Swedish Parole corpus
(Gellerstam et al. 00), which also contains other
genres though only newspaper texts were used
here. These texts are very hard for the gram-
mar checkers, since they are well proofread and

contain almost no errors. The results are shown
in Table 3. The results are not impressive, the
precision is very low for all grammar checkers.
Since there are almost no errors to find, this is
to be expected. The number of false positives
(false alarms) gives an indication of whether the
grammar checkers would be usable for writers who
make few errors. 50 false alarms, as for our pre-
sented method, in 10 000 words is probably tol-
erable, considering that the commercial grammar
checker produces about twice as many when in-
cluding spelling error reports, though of course it
also tries to capture more error types.

The second genre was essays written by peo-
ple learning Swedish as a second language. These
were taken from the SSM-corpus (Hammarberg
77). These texts contain a lot of errors, which is
generally good for the grammar checkers (easier
to get high precision). It also leads to problems
though, since many errors overlap and there is of-
ten very little correct text to base any analysis
on. Results are shown in Table 4. There are a
lot of errors that no grammar checker detects, in
a sample that was manually checked to find all
errors less than half the errors were detected.

The grammar checkers using manually con-
structed rules show much higher precision (about
95%) than our presented method (about 86%).
They also detect many more errors, mainly be-
cause they also look for spelling errors, which
are common and much easier to detect. When
it comes to grammatical errors the recall is com-
parable to the manual rules. On split compound
errors, which our method is well suited for and
which are hard to describe with rules, our method
performs very well. On agreement errors, which
are one of the best covered error types using man-



MS Word ProbGranska Granska Sn̊alGranska Total
All detected errors 10 1 8 3 13
All false positives 92 36 35 50 200
Detected spelling errors 8 0 6 1 9
False positives 89 - 20 - 101
Detected grammatical errors 2 1 2 2 4
False positives 3 36 15 50 99
Detected agreement errors 0 0 0 1 1
Detected split compounds 0 0 0 0 0

Table 3: Evaluation on proofread newspaper texts, 10 000 words. Since there are very few remaining
errors to detect, performance is less than impressive.

MS Word ProbGranska Granska Sn̊alGranska Total
All detected errors 392 101 411 122 592
All false positives 21 19 13 19 67
Detected spelling errors 334 34 293 26 362
False positives 18 - 5 - 21
Detected grammatical errors 58 67 118 96 230
False positives 3 19 8 19 46
Detected agreement errors 32 9 49 43 74
Detected split compounds 5 8 20 27 35

Table 4: Evaluation on second language learner essays, 10 000 words. With many errors in the text
high precision is to be expected. Less than half of all errors are detected, though.

ual rules, its performance is still quite good, with
similar recall but lower precision compared to the
manual rules.

It is also interesting to note that the grammar
checkers do not overlap very much in which errors
they detect. A total of 230 grammatical errors are
detected but no individual grammar checker de-
tects more than 118. Combining different meth-
ods, for instance by signaling an error whenever
at least one grammar checker believes something
is wrong, would thus give much higher recall.

The final genre was student essays written by
native speakers, Table 5. Again, the results are
not impressive for any of the grammar check-
ers. Many false alarms stem from quotations, law
books and old texts such as the Bible are quoted.
These contain text that is grammatical but dif-
fers a lot from “normal” language use. There are
also false alarms when spoken language construc-
tions that are rare in written texts are used. This
is especially true for the two automatic methods,
which both compare new texts to the “language
norm” they were trained on (in this case written
language).

4 Conclusions and Discussion

We have presented an error detection method that
requires almost no manual work. It works quite
well for detecting errors. It has lower precision
than state of the art grammar checkers based on
manually constructed rules, but the precision is
high enough to be useful. For some error types
the recall of the new method is much higher than
the recall of other grammar checkers.

The greatest advantage of this method of creat-
ing a grammar checker is that it is very resource
lean. A few minutes were spent on generating
artificial errors. Some other resources are also
needed but only commonly available resources:
unannotated text, a part-of-speech tagger and a
spelling checker was all that was used.

If several different modules are trained to detect
different types of errors they can be combined into
one framework that detects many error types. In
this case false alarms become a problem, since
even if each module only produces a few false
alarms the sum of them might be too high. In
our tests many false alarms were caused by some
other type of error occurring. This kind of false



MS Word ProbGranska Granska Sn̊alGranska Total
All detected errors 38 23 48 28 90
All false positives 31 45 13 31 111
Detected spelling errors 24 3 17 1 25
False positives 28 - 0 - 28
Detected grammatical errors 14 20 31 27 65
False positives 3 45 13 31 83
Detected agreement errors 5 0 11 8 15
Detected split compounds 0 1 1 1 1

Table 5: Evaluation on essays written by native speakers, 10 000 words. Frequent use of spoken
language style and quotations from for instance legal documents lead to a lot of false alarms in these
essays.

alarm might not be a serious problem, since they
are caused by real errors and just have the wrong
classification. Possibly the module which should
find this type of error will also find those errors
and the correct classification will also be available.
It is also possible to steer the machine learner to-
wards high precision (few false alarms).

It is especially interesting that the method
works so well for split compounds. This is a
common problem for second language learners of
Swedish and also quite common in informal texts
by native speakers. It is also a hard problem to
write rules for manually. Few grammar checkers
address these errors.

Another interesting and useful result is that the
automatically learned rules complement the man-
ually constructed rules. This means that they do
not find the same errors, so combining the two
methods to achieve better results than each indi-
vidual method is possible.

Acknowledgments

We thank Viggo Kann for contributing useful
ideas and helpful suggestions.

This work has been funded by The Swedish
Agency for Innovation Systems (VINNOVA).

References
(Arppe 00) Antti Arppe. Developing a grammar checker for

Swedish. In T. Nordg̊ard, editor, Proceedings of Nodalida ’99,
pages 13–27. Trondheim, Norway, 2000.

(Atwell 87) Eric Steven Atwell. How to detect grammatical errors
in a text without parsing it. In Proceedings of the 3rd EACL,
pages 38–45, Copenhagen, Denmark, 1987.

(Bigert & Knutsson 02) Johnny Bigert and Ola Knutsson. Robust
error detection: A hybrid approach combining unsupervised error
detection and linguistic knowledge. In Proceedings of Romand
2002, Robust Methods in Analysis of Natural language Data,
pages 10–19, 2002.

(Birn 00) Juhani Birn. Detecting grammar errors with lingsoft’s
Swedish grammar checker. In T. Nordg̊ard, editor, Proceedings
of Nodalida ’99, pages 28–40. Trondheim, Norway, 2000.

(Brants 00) Thorsten Brants. TnT – a statistical part-of-speech
tagger. In Proceedings of the 6th Applied NLP Conference,
ANLP-2000, pages 224–231, Seattle, USA, 2000.

(Chodorow & Leacock 00) Martin Chodorow and Claudia Leacock.
An unsupervised method for detecting grammatical errors. In
Proceedings of NAACL’00, pages 140–147, Seattle, USA, 2000.

(Domeij et al. 94) Rickard Domeij, Joachim Hollman, and Viggo
Kann. Detection of spelling errors in Swedish not using a word
list en clair. Journal of Quantitative Linguistics, 1:195–201,
1994.

(Domeij et al. 00) Richard Domeij, Ola Knutsson, Johan Carl-
berger, and Viggo Kann. Granska – an efficient hybrid system
for Swedish grammar checking. In Proceedings of Nodalida ’99,
pages 49–56, Trondheim, Norway, 2000.

(Ejerhed et al. 92) Eva Ejerhed, Gunnel Källgren, Ola Wennstedt,

and Magnus Åström. The linguistic annotation system of the
Stockholm-Ume̊a Corpus project. Technical report, Department
of General Linguistics, University of Ume̊a (DGL-UUM-R-33),
Ume̊a, Sweden, 1992.

(Gellerstam et al. 00) Martin Gellerstam, Yvonne Cederholm, and
Torgny Rasmark. The bank of Swedish. In Proceedings of LREC
2000, pages 329–333, Athens, Greece, 2000.

(Golding 95) Andrew Golding. A bayesian hybrid for context sensi-
tive spelling correction. In Proceedings of the 3rd Workshop on
Very Large Corpora, pages 39–53, Cambridge, USA, 1995.

(Hammarberg 77) Björn Hammarberg. Svenskan i ljuset av invan-
drares spr̊akfel. Nysvenska studier, 57:60–73, 1977.

(Han et al. 04) Na-Rae Han, Martin Chodorow, and Claudia
Leacock. Detecting errors in english article usage with a max-
imum entropy classifier trained on a large, diverse corpus. In
Proceedings of LREC-2004, pages 1625–1628, Lisbon, Portugal,
2004.

(Hardt 01) Daniel Hardt. Transformation-based learning of Danish
grammar correction. In Proceedings of RANLP 2001, Tzigov
Chark, Bulgaria, 2001.

(Izumi et al. 03) Emi Izumi, Kiyotaka Uchimoto, Toyomi Saiga,
Thepchai Supnithi, and Hitoshi Isahara. Automatic error de-
tection in the Japanese learners’ English spoken data. In Com-
panion Volume to the Proceedings of ACL ’03, pages 145–148,
Sapporo, Japan, 2003.

(Kann et al. 01) Viggo Kann, Rickard Domeij, Joachim Hollman,
and Mikael Tillenius. Implementation aspects and applications
of a spelling correction algorithm. In L. Uhlirova, G. Wim-
mer, G. Altmann, and R. Koehler, editors, Text as a Linguis-
tic Paradigm: Levels, Constituents, Constructs. Festschrift in
honour of Ludek Hrebicek, volume 60 of Quantitative Linguis-
tics, pages 108–123. WVT, Trier, Germany, 2001.

(Mangu & Brill 97) Lidia Mangu and Eric Brill. Automatic rule
acquisition for spelling correction. In Proceedings of the 14th
International Conference on Machine Learning, pages 187–194,
1997.

(Ngai & Florian 01) Grace Ngai and Radu Florian. Transformation-
based learning in the fast lane. In Proceedings of NAACL-2001,
pages 40–47, Carnegie Mellon University, Pittsburgh, USA, 2001.


