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Abstract—We describe a system called the Digital Dashboard
that uses multiple linked views of data. All views allow
interaction with the visualization results and interaction is done
through direct manipulation. The system has been extended to
allow new complex data to be generated in analysis components
at runtime, e.g. by statistical analysis or data mining of parts
of the data. The resulting data can be used in other linked
views or analysis components, so when e.g. a data mining
parameter is changed, all linked views (or analysis components)
are automatically updated as soon as the new calculations are
finished, and when something changes in linked components
(e.g. a different subset of the data is selected), the calculations
are automatically redone (if necessary).
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I. INTRODUCTION

Recently, we have encountered similar problems in two
quite different projects. One project concerns “personalized
medicine”, trying to develop methods to give cancer patients
treatments tailored specifically to them instead of giving
all patients more or less the same treatment. The other
project concerns snow removal in the city of Sapporo. In
both cases, we have problems with sparse, low quality, and
very high dimensional data. The problems are also not well
understood and hence difficult to model. We believe that for
hypothesis generation and for gaining insights into how to
model (parts of) the problems, visual exploration of the data
can be helpful.

Multiple linked views[1] of the same data is useful
when visually exploring data. Interaction in one view, e.g.
selecting or grouping the data, is automatically reflected
in other linked views. We have previously developed a
system[2] where you can use direct manipulation [1], [3]
to interact with visualization results. The system supports
multiple linked views and also allows data mash-up, i.e. you
can visualize and link data from different sources.

Directly interacting with the visualization results that
seem to tell you something interesting is very powerful.
In our system, all components allow interaction and the
interactions are reflected in all linked components. New
visualization components and data sources can be added
at any time. We believe that allowing not only interaction

with linked visualization results, but also allowing linked
components that can do advanced analysis can be even more
powerful. We call this Exploratory Visual Analytics.

Our system has been extended to allow linking of both
views and analysis components. Components can generate
new complex data at runtime, and this new data can be
immediately used. One example is selecting a subset of the
data using a visualization component, performing machine
learning on this subset, and visualizing the results in yet
another component. The visualized machine learning results
can be interacted with and data can be grouped based on the
results etc. Analysis components are linked in the same way
as other components, so changing some machine learning
parameter will result in all linked views being updated with
the new results as soon as the calculations are finished,
and interacting with linked components that the machine
learning calculations are based on will automatically trigger
recalculations in the machine learning component.

II. EXPLORATORY VISUAL ANALYTICS

Exploratory Visual Analytics uses the coordinated multi-
ple view visualization framework (multiple linked views)[1]
as a base. The framework allows more than one view of the
same database. In Figure 1, four different views, V1 through
V4 based on the database queries Q1 through Q4, of the
same database ∆ are shown. This schema corresponds to
the concrete visualization shown in Figure 2.

A view Vi can be a map view, a graph representation,
a calendar view, etc. and shows the result Qi(∆) of some
query Qi associated with this view. Each view allows users
to select a set of visualized objects by directly specifying
each of them or by enclosing groups of objects. This defines
a new additional quantification condition C to quantify
the objects stored in the underlying database ∆, and this
quantification defines a new database view ∆′, where ∆′ =
select * from ∆ where C.

All other linked views Vj then immediately change their
visualizations from Qj(∆) to Qj(∆

′), or simply highlight
the objects in Qj(∆

′), depending on the user specified
visualization mode of Vj .
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Figure 1. Multiple linked views and iterative visual exploration.

A user may start with the original database ∆ and
repetitively try different selections or groupings of visual
objects using different views to explore the data and try
to find meaningful groups of database objects. The user
may roll back previous object selections to try a different
quantification using the same or a different view. Figure 1
schematically shows this process.

A view in a coordinated multiple view visualization is
normally just a database visualization. We would like to
allow analysis tools to be applied to such quantified sets
of database objects as described above, and the results of
the analyses to be used in further visualizations or analyses.

So an exploratory visual analytics system requires both
a coordinated multiple view visualization framework to
integrate the analysis tools in, and a library of analysis
tools. This allows the coordination of visualization results,
quantifications based on the visualizations, analysis tools,
and new data generated from these analyses. We have
extended our system, described later, to allow this.

III. COMPARISONS TO SIMILAR SYSTEMS

There are many systems for visualization and exploration
of data that use linked views[1]. Our system has the follow-
ing important features:
• it uses multiple linked views of the data
• it allows interaction with all visualization results

through direct manipulation
• it allows creation of new complex data at runtime, and

such data to be used like any other data
• it immediately updates all linked components, allowing

real time interaction and exploration
• it allows addition of new data components (data mash-

up) and new visualization components at any time.
The system also has the following features that are useful,
though not directly related to data exploration:
• it is component based with components that are hidden

from each other by a common interface
• it allows external software to be used as components
• it runs in a Web browser (no installation necessary)
• it allows fast prototyping since it is built using a

pluggable component framework called Webbles[4], the
latest version of Meme Media[5].

There are systems that have several of the features above,
many systems for example support data mash-up, but we
are not aware of any systems that have all these features.
We believe that allowing advanced analysis components to
create new complex data at runtime, and such components
to be linked like any other component, is a useful extension
of linked views. We have not seen any systems that allow
interaction with visualization results that then affect the input
to such analysis components, and that also allow further
visualization of and interaction with the results, and where
changes in any linked components affect all other linked
components (not only one-way flows).

There are systems that use graphical interfaces such
as a flow chart style interface to set up what types of
preprocessing, analysis, data mining, and visualization etc.
should be done. Changes in the flow chart lead to updated
visualizations, but interaction with the actual visualization
results is very limited or not possible. Examples of such
systems include RapidMiner[6] and DEVise[7].

There are systems that use multiple linked views of data
and allow interaction with the visualization results. Selecting
data in one view updates the other views to show only this
selection, or clicking on one item in one view shows details
about it in another view, etc. Creating new complex data in
analysis components is not possible, though. Examples of
such systems include: SpotFire[8], Tioga-2[9] (now Tioga
DataSplash), and Snap-Together Visualization[10].

One example system quite similar to ours is KNIME[11],
which uses a graphical flow chart to set up processing
and visualization of data. It allows adding new user built
components and uses multiple linked views for visualization.
Selecting subsets of data in one view highlights these in
other views, but unlike in our system it does not trigger
recalculation of related data mining results etc.

Another system with many of the features above is
Orange[12]. It sets up data flows in a flow chart, has both
visualization and analysis components, allows user built
components, and selections in a visualization component can
trigger recalculation in data mining components etc. Unlike
in our system, two components cannot feed back into each
other, so selections in one component can affect the other,
but selections in the other component cannot be reflected
back to the first.

There are also some precursors to our system. The
VERD[13] system is based on IntelligentBox, another version
of Meme Media[5]. It visualizes relational databases and
allows Web resources to be treated as relational schema.
Unlike our system, visualizations are set up in a flow
and interaction with visualization results only affect other
visualizations “downstream” of the interaction point.

The Trial Outline Builder[14] is a support system for
clinical trials built using Webbles[4] that has a data analysis
part similar to our system. That system and previous versions
of our system[2] used only visualization components.



IV. THE DIGITAL DASHBOARD SYSTEM

We here describe a system called the Digital Dashboard.
It is a tool set for data analysis, data visualization, and
data exploration. The Digital Dashboard is designed for
ad-hoc federation of components, both data components,
analysis components, and visualization components. New
data can be added at any time, e.g. to complement the
data currently explored with more information. New analysis
tools or visualization components can also be added, to add
new ways of looking at the same data or to view different
subsets of the data side by side.

Analysis tools can be used to create new (complex)
features at runtime, and these can immediately be used in
other components. All views and analysis components can
be linked. Changes, e.g. subsets of data being selected or ma-
chine learning parameters being changed, are automatically
reflected in all linked components immediately, allowing
interactive exploration of the data. All components also
allow interaction, which is done through direct manipulation.

Data components can be files, e.g. XML files or CSV files
with data, or wrap a database or a Web service.

Several demo versions of the system are available online1.
Most of the data we have are sensitive and cannot be shared,
so there is not much data to use the system with, though.

A. Underlying Technology

The Digital Dashboard is built using pluggable software
components called Webbles[4]. Webbles are the latest version
of the Meme Media (IntelligentPad) framework[5] and Web-
bles run inside a Web browser. The current version requires
a Microsoft Silverlight browser plugin but other than that,
any Web browser can be used. In the near future, the Webble
framework and our system will be moved to HTML5 and
Javascript, supported by more platforms than Silverlight.

Webbles are like software LEGO blocks, and you can plug
any two Webbles together and they will start sharing data and
functionality. The goal of Meme Media is to make sharing,
reediting, and redistribution of functionality as easy as copy-
pasting text or images already is.

A Webble has ports called slots. Slots represent internal
variables or input and output functions. A Webble can be
connected to another Webble by making it a child to that
Webble. A Webble can have any number of children, but
can have at most one parent. A child can connect one of
its slots to one of the parent’s slots and the Webbles will
then communicate using these slots. If the slot represents a
variable, the Webbles will in effect have a shared variable.

In general, one visualization or analysis component in our
system corresponds to one Webble, but some components
are built using more than one Webble. One strength of
the Webble framework is that you can wrap existing (non-
Webble) software with a Webble wrapper. Once software has

1http://cow.meme.hokudai.ac.jp/WebbleWorldPortal/

been wrapped, it can be used like any other Webble and other
Webbles can connect to it without knowing that it is actually
some external software. In our system, we have wrapped
the ArcGIS2 software with a Webble wrapping interface,
allowing it to be used like a normal component.

Using these generic components meant that it was easy to
add new components once the basic system was finished, and
prototyping new components is very fast. When developing
new components, devising a user interface for the interaction
has generally been more time consuming than implement-
ing the visualization or analysis algorithms. For this, fast
prototyping has been helpful.

B. System Structure

Apart from using the pluggable component framework
described in the previous Section, the system also has a
simple component interface, a set of slots, that it expects
all plugins to follow. As long as a component follows the
expected interface, it can be added to the system and used
immediately, without having to rebuild or even restart the
system. The system itself need not be aware of the internal
workings of any new components, and all components are
hidden from each other by the parent system.

This means that visualization components need not worry
about the format the data may be stored in or if data
comes from several different sources etc. They also do not
need to care about whether there are any other components
visualizing the same data or not.

It is the job of data source components to hide the
underlying data format and present data in a standard format.
The Digital Dashboard parent also does not care about the
data format, and as long as a visualization component and
a data source component both understand a certain data
type (and can agree on the name) data types the Digital
Dashboard has never heard of can also be used.

In the system there is a Digital Dashboard parent Webble.
All data source Webbles, all visualization component Web-
bles, and all analysis component Webbles are connected as
children to the Dashboard parent. Complex components can
have other Webbles as children in turn, but should not have
other components as children.

Data source components are expected to have these slots:
• ProvidedFormat, XML detailing the data this source

provides: the data types of the different data fields and
what the fields should be called (in menus etc.).

• FormatChanged, signaling that the format of the data
this source provides has changed.

• DataValuesChanged, signaling that the data has
changed and the parent needs to update any visualiza-
tion components using data from this source.

They also have slots containing the actual data.

2ESRI (2012) ArcGIS API for Silverlight (ver. 2.4)
http://help.arcgis.com/en/webapi/silverlight/



Visualization components are expected to have these slots:
• ExpectedFormat, XML describing what types of data

the plugin wants and in which slots it expects to receive
the data. Several different sets of data can be specified
(e.g. a component could accept vector data as a start
and end point pair or as a starting point, a direction,
and a length).

• DataValuesSetFilled, a slot where the parent informs
the plugin about which slots it has filled with data (data
fields can be optional).

• DataValuesChanged, a slot where the parent signals that
the data has changed.

• LocalSelections, a slot where the plugin tells the par-
ent which data items are selected/deselected/grouped
together on this component.

• GlobalSelections, a slot where the parent tells the
plugin the global selection status of the data items (e.g.
a data item may be selected locally but unselected on
another component, making it unselected globally).

• GroupColors, information on what colors the plugins
should use to visualize different groups of data for a
uniform look across all components.

They also have slots for data input, described in the XML
of the ExpectedFormat slot.

Analysis components are generally expected to follow
both the data source interface and the visualization compo-
nent interface, since they will receive data like visualization
components and produce data like data source components.
All components are also required to have a PluginName slot
specifying what name to use in menus etc., and a PluginType
slot specifying what type of plugin it is.

C. Basic Usage Example

Here we give a simple usage example, showing the basic
user interaction. It shows a small subset of the Digital
Dashboard functionality: linked views (a change in one
changes all) and ad hoc addition of new data.

The example uses data from a project on snow removal
we are involved in. Sapporo has 2 million citizens and gets 6
meters of snow per year. It costs around 150 million dollars
per year to remove snow and keep the city running.

We begin with a set of probe car data. These are data from
private cars that every few seconds report where the car is,
what time it is, and how fast the car is going. The data is
collected using the car navigation system and the cell phone
network. For privacy reasons, the data has been averaged.
In this example, the city of Sapporo was divided into square
cells and the number of cars passing each cell during two
hour intervals was counted. Any cell with less than 10 cars
was discarded for privacy reasons.

The data we used were the average speed, the number of
cars, the speed compared to the average speed in the same
cell at the same time of day during the summer (i.e. how
much worse the speed is compared to traffic when there is no

Figure 2. Basic usage with multiple linked views. Traffic data from
Sapporo is explored by selecting data with speed much lower than normal
(scatter plot), and then further restricting the selection to night time data
(24h clock). The map is zoomed in on one problem area with many
remaining blue dots (area marked with a red square). A new data source
with Twitter data (red dots) is added. Mouse-over text shows people in the
problem area talking about snow problems.

snow), and the speed compared to the winter average speed.
We also use social networking data from Twitter. The data
have the times, the locations, the text contents, and the user
IDs of all location tagged tweets from Sapporo.

In Figure 2 one week of probe car data is visualized
using four visualization components. There is a map with
the locations, a scatter plot showing the speed difference
compared to summer conditions (horizontal axis) and to
average winter conditions (vertical axis), a 24 hour clock
showing the amount of data at different times of day, and a
histogram showing the number of data samples per day.



In this image we can see that there are few cars driving
around at night (smaller dots during the night time intervals
on the 24h clock) and that the traffic peak is at around 18:00.
We can also see that more people use their cars on Saturdays
(the big peak in the bar chart) but other than that there is
not so much variation over the week.

To find locations with snow removal problems, we use
the scatter plot to select only data where the speed is much
lower than the normal speed. This immediately updates
all visualization components. We also use the 24h clock
to further restrict our selection to night time data, again
updating all views. Locations with a big drop in speed even
at night are likely to have problems with snow or ice. We
also zoom in the map to take a closer look at an area (marked
with a red square) where several locations have speed downs
at night, resulting in the lower image in Figure 2.

Traffic problems can be caused by other things too (e.g.
construction work). To check our hypothesis that this area
has problems with snow, we drag-and-drop another data
source into the Dashboard, adding the Twitter data. The
Twitter data locations are shown with red dots on the map,
and holding the mouse pointer over one tweet near our
problem area shows the text content: “The melting snow
in Sapporo is horrible!” (translated to English). The Twitter
data seem to confirm that the problems are snow related.

D. Usage Example with Analysis Components

In the next example patient data is used. For each patient
there are gene response data and a field indicating if the
cancer relapsed after treatment or not. In Figure 3, the gene
response data is shown in a heat map, where the rows are
patients and the columns are genes. Red color means a
high response, black color an average response, and blue
color means a very low response. The relapse or no relapse
status is shown in a bar chart, and another bar chart shows
individual genes and can be used to access more information
about genes that are deemed interesting. We also have an
analysis component, a frequent pattern mining component,
linked to the other components.

The patients are grouped into patients with or without
relapse, using the bar chart component. In the middle
image, the heat map is used to create item sets for the
frequent pattern mining. Only cells with a high response are
selected by setting a response threshold. Transaction data
are generated where each patient is treated as a transaction,
and this transaction is made up by all the genes that for this
patient had a response above the threshold. So a patient with
a high response for (only) the genes “SNK”, “Titen”, and
“TrkB” would generate a transaction “{SNK, Titen, TrkB}”.

The frequent pattern mining component then takes these
transactions and searches for frequent patterns. In this exam-
ple, it finds that when the gene “SNK” has a high response,
the gene “PDGFR-a” usually also has a high response. It
also finds that this pattern is only common in the group

Figure 3. A heat map of patient-gene responses is linked to the
relapse/no relapse status of the patients. Selecting a gene response threshold
(middle image) creates item sets which are used by a frequent pattern
mining component. Patients in the red (non-relapse) group have some gene
expression patterns not common in the other group, and selecting one such
pattern (bottom image) shows only the genes involved, both in the bar chart
with genes and in the heat map.



of patients with no relapse, so we may have found a gene
expression pattern indicating low risk of relapse.

Selecting one or more patterns shows only the genes
corresponding to the selected patterns, both in the heat map
and in the bar chart with genes, and more information can
then be retrieved for these. Changing the heat map threshold
or the grouping of the patients causes the pattern mining
component to redo the pattern mining.

E. Available Components

Currently the following components are available:
Visualization Plugins: Bar charts, easily extended to other

standard chart types; Scatter plots, for numerical or date/time
data; Clocks, for time data; Life tables, survivability charts,
usually the number of patients still alive (or still relapse free
etc.) as a function of time (commonly used to compare med-
ical treatments); Heat maps, intensity maps; Lines on maps,
for example roads; Points on maps, for example building
locations; Linked points on maps, for example for geograph-
ical time series data; Gene Info, showing information from
and linking to gene databases; Parallel coordinates[15]; and
Storygraphs[16].

Data Source Plugins: CSV (comma separated vector)
parsing, XML parsing, and Web Service wrapping.

Analysis Plugins: Clustering, supporting several common
clustering algorithms, and Frequent Pattern Mining.

CONCLUSIONS

We described a system for visual exploration of data. It
uses direct manipulation of the visualization results in linked
views of the data. Adding new data sources is possible
at any time (data mash-up) and adding new visualization
tools (or clones of ones already used) can also be done at
runtime. The system is built using a software component
based framework, making it easy to build new components
and to prototype new interfaces etc.

The main new extension compared to previous versions of
the system is that it is possible to use components that create
new complex data at runtime, for example machine learning
components or statistical analysis components. These can be
linked just like any other component, and changed parameter
settings etc. will automatically be reflected in all other
linked views (or analysis components) as soon as the new
calculations are finished. One example in our system is
a frequent pattern mining component that generates rules
based on frequent patterns in the data. These rules are
generated based on the selections and groupings in other
linked components and the resulting rules can then be the
base of new groupings or selections (or calculations in other
analysis components).
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lutinovič, M. Možina, M. Polajnar, M. Toplak, A. Starič,
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